Mathematical and Physical Journal
for High Schools
Issued by the MATFUND Foundation
 Already signed up? New to KöMaL?

Solutions for advanced problems "A" in February, 2004

In this page only the sketch of the solutions are published; in some cases only the final results. To achieve the maximum score in the competition more detailed solutions needed.

A. 338. For any positive integer n denote the closest integer to $\displaystyle \sqrt{n}$ by f(n). Calculate the value of the sum

$\displaystyle \sum_{n=1}^\infty\frac{2^{f(n)}+2^{-f(n)}}{2^n}.$

Solution. It is easy to check that for each positive integer k, f(n)=k if and only if k2-k+1 $\displaystyle \le$n $\displaystyle \le$k2+k. Grouping the terms by the values of f(n),

$\displaystyle \sum_{n=1}^{m^2+m}\frac{2^{f(n)}+2^{-f(n)}}{2^n} = \sum_{k=1}^m\sum_{n=k^2-k+1}^{k^2+k}\frac{2^k+2^{-k}}{2^n} =$

$\displaystyle = \sum_{k=1}^m(2^k+2^{-k})\left(\frac1{2^{k^2-k}}-\frac1{2^{k^2+k}}\right) = \sum_{k=1}^m\left(\frac1{2^{(k-2)k}}-\frac1{2^{k(k+2)}}\right) =$

$\displaystyle = \frac1{2^{(-1)\cdot1}}+\frac1{2^{0\cdot2}} -\frac1{2^{(m-2)m}}-\frac1{2^{m(m+2)}} = 3-\frac1{2^{(m-2)m}}-\frac1{2^{m(m+2)}}.$

The last two quantites converge to 0, so

$\displaystyle \sum_{n=1}^\infty\frac{2^{f(n)}+2^{-f(n)}}{2^n} = \lim_{m\to\infty}\sum_{n=1}^{m^2+m}\frac{2^{f(n)}+2^{-f(n)}}{2^n} =3.$

A. 339. We want to select 4 tuples from a 28-element set with the following properties: a) Any two 4-tuple has at most two common elements; b) for any element x and 4-tuple A that is not containing x there exists at least one 4-tuple B that contains x-et and it has exactly two common elements with A. Is it possible to select such a system of 4-tuples?

Solution. There exists such a system of sets. Consider the 28 edges of a a complete graph on 8 vertices. Select those 4-tuples of edges which span all vertices. The set of such 4-tuplets has the required properties.

A. 340. Is it possible that the length of the intersection of a circular disc of unit radius and a parabola is greater than 4 units?

Soultion. Yes. Let the center of the circle be the origin of the Cartesian co-ordinate system, let the axis of the parabola be the y-axis and let its vertex be at (0,-1) (see Figure) and suppose that it contains points ($\displaystyle \pm$sin $\displaystyle \alpha$,cos $\displaystyle \alpha$) where $\displaystyle \alpha$ is a small positive angle.

The equation of the parqabola is

$\displaystyle y={1+\cos\alpha\over\sin^2\alpha}x^2+1= {1\over2\sin^2{\alpha\over2}}x^2+1.$

The length of the arc is

$\displaystyle l=\int\limits_{-\sin\alpha}^{\sin\alpha}\sqrt{1+{x^2\over\sin^4{\alpha\over2}}}dx.$

Substituting $\displaystyle u-{1\over u}={2x\over\sin^2{\alpha\over2}}$ and denoting $\displaystyle {\sin\alpha\over\sin^2{\alpha\over2}}=2\ctg{\alpha\over2}$ by A,

$\displaystyle \sqrt{1+{x^2\over\sin^4{\alpha\over2}}}={u+{1\over u}\over2}$

and

$\displaystyle l= \int\limits_{\sqrt{1+A^2}-A}^{\sqrt{1+A^2}+A} {u+{1\over u}\over2}\cdot\bigg({\sin^2{\alpha\over2}\over2}\Big(u-{1\over u}\Big)\bigg)'du = {\sin^2{\alpha\over2}\over4} \int\limits_{\sqrt{1+A^2}-A}^{\sqrt{1+A^2}+A} \bigg(u+{2\over u}+{1\over u^3}\bigg)du =$

$\displaystyle = {\sin^2{\alpha\over2}\over4}\bigg(4A\sqrt{1+A^2}+ 4\log\big(A+\sqrt{1+A^2}\big)\bigg).$

By the inequalities $\displaystyle \sqrt{1+A^2$A=2\ctg{\alpha\over2}>{4\over\alpha}">, $\displaystyle \sin\alph$\alpha-{1\over6}\alpha^3"> and $\displaystyle \sin{\alpha\over2${\alpha\over4}">,

$\displaystyle {\sin^2{\alpha\over2}\over4}\cdot4A\sqrt{1+A^2} = \sin\alpha\sqrt{1+A^2$\bigg(\alpha-{1\over6}\alpha^3\bigg){4\over\alpha} = 4-{2\over3}\alpha^2, ">

$\displaystyle \sin^2{\alpha\over2}\log\big(A+\sqrt{1+A^2}\big$ {\alpha^2\over16}\log{8\over\alpha} ">

and

$\displaystyle$4+\alpha^2\bigg({1\over16}\log{8\over\alpha}-{2\over3}\bigg).">

If $\displaystyle \alpha$ sufficiently small, then $\displaystyle {1\over16}\log{8\over\alpha${2\over3}"> and l>4.